Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Improvement of the sputtered platinum utilization in proton exchange membrane fuel cells using plasma-based carbon nanofibres

Identifieur interne : 008800 ( Main/Exploration ); précédent : 008799; suivant : 008801

Improvement of the sputtered platinum utilization in proton exchange membrane fuel cells using plasma-based carbon nanofibres

Auteurs : A. Caillard [Australie, France] ; C. Charles [Australie] ; R. Boswell [Australie] ; P. Brault [France]

Source :

RBID : ISTEX:78ABA4092C5144D57BC1050FCD4DAC2D089BE60C

Descripteurs français

English descriptors

Abstract

Proton exchange membrane fuel cells are complex nanostructures containing a catalyst (usually platinum), proton and electron conductors and pores. Their electrode performance is strongly influenced by the size, the repartition and the orientation of the nanoseparated materials used and the pores. This paper investigates the electrical performance achieved by three designs of plasma-prepared Pt/C electrodes with low Pt loadings (from 0.01 to 0.1mgPtcm2). A plasma sputtering process was used for the synthesis of Pt nano-clusters in three different microporous supports: a single oriented layer based on aligned carbon nanofibres (CNFs, custom-made by plasma), a single convoluted layer based on Vulcan carbon particles (LT1600, known as a gas diffusion layerGDL) or a double layer composed of CNFs covering a GDL. Membrane electrode assemblies (MEAs) were prepared by hot-pressing one of these three electrodes with a commercial electrode (0.5mgPtcm2) and a commercial Nafion 115 membrane, and compared with a reference MEA (from Electrochem Inc. with a Pt loading per electrode of 0.5mgPtcm2 and a maximum power density of 425mWcm2). The cathodic Pt utilization efficiency in the best performing plasma-prepared cathode (based on the double layer GDL/CNF) with a Pt loading of 0.1mgPtcm2 is 3.6 times higher than that measured for the commercial cathode (3.1 versus ). On the anode side, the three designs of plasma-prepared electrodes with 0.01mgPtcm2 lead to similar MEA performance than a commercial electrode at high backpressure (3bar). At a lower backpressure, the GDL/CNF electrode is the best performing plasma-prepared anode.

Url:
DOI: 10.1088/0022-3727/41/18/185307


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Improvement of the sputtered platinum utilization in proton exchange membrane fuel cells using plasma-based carbon nanofibres</title>
<author>
<name sortKey="Caillard, A" sort="Caillard, A" uniqKey="Caillard A" first="A" last="Caillard">A. Caillard</name>
</author>
<author>
<name sortKey="Charles, C" sort="Charles, C" uniqKey="Charles C" first="C" last="Charles">C. Charles</name>
</author>
<author>
<name sortKey="Boswell, R" sort="Boswell, R" uniqKey="Boswell R" first="R" last="Boswell">R. Boswell</name>
</author>
<author>
<name sortKey="Brault, P" sort="Brault, P" uniqKey="Brault P" first="P" last="Brault">P. Brault</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:78ABA4092C5144D57BC1050FCD4DAC2D089BE60C</idno>
<date when="2008" year="2008">2008</date>
<idno type="doi">10.1088/0022-3727/41/18/185307</idno>
<idno type="url">https://api.istex.fr/document/78ABA4092C5144D57BC1050FCD4DAC2D089BE60C/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001675</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001675</idno>
<idno type="wicri:Area/Istex/Curation">001675</idno>
<idno type="wicri:Area/Istex/Checkpoint">001167</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">001167</idno>
<idno type="wicri:doubleKey">0022-3727:2008:Caillard A:improvement:of:the</idno>
<idno type="wicri:Area/Main/Merge">009061</idno>
<idno type="wicri:source">INIST</idno>
<idno type="RBID">Pascal:09-0013329</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">003111</idno>
<idno type="wicri:Area/PascalFrancis/Curation">002F06</idno>
<idno type="wicri:Area/PascalFrancis/Checkpoint">003159</idno>
<idno type="wicri:explorRef" wicri:stream="PascalFrancis" wicri:step="Checkpoint">003159</idno>
<idno type="wicri:doubleKey">0022-3727:2008:Caillard A:improvement:of:the</idno>
<idno type="wicri:Area/Main/Merge">009573</idno>
<idno type="wicri:Area/Main/Curation">008800</idno>
<idno type="wicri:Area/Main/Exploration">008800</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Improvement of the sputtered platinum utilization in proton exchange membrane fuel cells using plasma-based carbon nanofibres</title>
<author>
<name sortKey="Caillard, A" sort="Caillard, A" uniqKey="Caillard A" first="A" last="Caillard">A. Caillard</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Space Plasma, Power, and Propulsion Group, Research School of Physical Sciences and Engineering, The Australian National University, Canberra, ACT 0200</wicri:regionArea>
<wicri:noRegion>ACT 0200</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">France</country>
</affiliation>
</author>
<author>
<name sortKey="Charles, C" sort="Charles, C" uniqKey="Charles C" first="C" last="Charles">C. Charles</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Space Plasma, Power, and Propulsion Group, Research School of Physical Sciences and Engineering, The Australian National University, Canberra, ACT 0200</wicri:regionArea>
<wicri:noRegion>ACT 0200</wicri:noRegion>
</affiliation>
<affiliation></affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">Australie</country>
</affiliation>
</author>
<author>
<name sortKey="Boswell, R" sort="Boswell, R" uniqKey="Boswell R" first="R" last="Boswell">R. Boswell</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Space Plasma, Power, and Propulsion Group, Research School of Physical Sciences and Engineering, The Australian National University, Canberra, ACT 0200</wicri:regionArea>
<wicri:noRegion>ACT 0200</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">Australie</country>
</affiliation>
</author>
<author>
<name sortKey="Brault, P" sort="Brault, P" uniqKey="Brault P" first="P" last="Brault">P. Brault</name>
<affiliation wicri:level="1">
<country xml:lang="fr">France</country>
<wicri:regionArea>Groupe de Recherche sur l'Energtique des Milieux Ioniss, UMR6606 Universit d'OrlansCNRS Polytech'Orlans BP6744, F-45067 Orlans Cedex 2</wicri:regionArea>
<wicri:noRegion>45067 Orlans Cedex 2</wicri:noRegion>
<wicri:noRegion>F-45067 Orlans Cedex 2</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">France</country>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Journal of Physics D: Applied Physics</title>
<title level="j" type="abbrev">J. Phys. D: Appl. Phys.</title>
<idno type="ISSN">0022-3727</idno>
<idno type="eISSN">1361-6463</idno>
<imprint>
<publisher>IOP Publishing</publisher>
<date type="published" when="2008">2008</date>
<biblScope unit="volume">41</biblScope>
<biblScope unit="issue">18</biblScope>
<biblScope unit="page" from="1">1</biblScope>
<biblScope unit="page" to="10">10</biblScope>
<biblScope unit="production">Printed in the UK</biblScope>
</imprint>
<idno type="ISSN">0022-3727</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0022-3727</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Active layer</term>
<term>Appl</term>
<term>Backpressure</term>
<term>Basf fuel cell</term>
<term>Boswell</term>
<term>Brault</term>
<term>Caillard</term>
<term>Carbon paper</term>
<term>Carbon support</term>
<term>Carbon vulcan particles</term>
<term>Catalyst</term>
<term>Catalytic layer</term>
<term>Cathode side</term>
<term>Cell voltage</term>
<term>Cnfs</term>
<term>Commercial cathode</term>
<term>Commercial electrode</term>
<term>Current density</term>
<term>Deposition</term>
<term>Double layer</term>
<term>Electrical performance</term>
<term>Electrical properties</term>
<term>Electrochem</term>
<term>Electrode</term>
<term>Fuel cell</term>
<term>Fuel cell performance</term>
<term>Gure</term>
<term>Lett</term>
<term>Maximum power density</term>
<term>Meas</term>
<term>Mgpt</term>
<term>Microporous</term>
<term>Microporous layer</term>
<term>Nanofiber</term>
<term>Nanostructured</term>
<term>Performance</term>
<term>Phys</term>
<term>Plasma</term>
<term>Plasma processes</term>
<term>Platinum</term>
<term>Platinum utilization</term>
<term>Polarization curves</term>
<term>Power density</term>
<term>Power sources</term>
<term>Proton exchange membrane fuel cells</term>
<term>Reference assembly</term>
<term>Substrate holder</term>
<term>Tted</term>
<term>Vulcan</term>
<term>Vulcan carbon particles</term>
<term>Vulcan cnfs</term>
<term>Vulcan particles</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Catalyseur</term>
<term>Nanofibre</term>
<term>Performance</term>
<term>Pile combustible membrane échangeuse proton</term>
<term>Plasma</term>
<term>Platine</term>
<term>Propriété électrique</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Active layer</term>
<term>Appl</term>
<term>Backpressure</term>
<term>Basf fuel cell</term>
<term>Boswell</term>
<term>Brault</term>
<term>Caillard</term>
<term>Carbon paper</term>
<term>Carbon support</term>
<term>Carbon vulcan particles</term>
<term>Catalytic layer</term>
<term>Cathode side</term>
<term>Cell voltage</term>
<term>Cnfs</term>
<term>Commercial cathode</term>
<term>Commercial electrode</term>
<term>Current density</term>
<term>Deposition</term>
<term>Double layer</term>
<term>Electrical performance</term>
<term>Electrochem</term>
<term>Electrode</term>
<term>Fuel cell</term>
<term>Fuel cell performance</term>
<term>Gure</term>
<term>Lett</term>
<term>Maximum power density</term>
<term>Meas</term>
<term>Mgpt</term>
<term>Microporous</term>
<term>Microporous layer</term>
<term>Nanostructured</term>
<term>Phys</term>
<term>Plasma processes</term>
<term>Platinum</term>
<term>Platinum utilization</term>
<term>Polarization curves</term>
<term>Power density</term>
<term>Power sources</term>
<term>Reference assembly</term>
<term>Substrate holder</term>
<term>Tted</term>
<term>Vulcan</term>
<term>Vulcan carbon particles</term>
<term>Vulcan cnfs</term>
<term>Vulcan particles</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Pile à combustible</term>
<term>Platine</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">Proton exchange membrane fuel cells are complex nanostructures containing a catalyst (usually platinum), proton and electron conductors and pores. Their electrode performance is strongly influenced by the size, the repartition and the orientation of the nanoseparated materials used and the pores. This paper investigates the electrical performance achieved by three designs of plasma-prepared Pt/C electrodes with low Pt loadings (from 0.01 to 0.1mgPtcm2). A plasma sputtering process was used for the synthesis of Pt nano-clusters in three different microporous supports: a single oriented layer based on aligned carbon nanofibres (CNFs, custom-made by plasma), a single convoluted layer based on Vulcan carbon particles (LT1600, known as a gas diffusion layerGDL) or a double layer composed of CNFs covering a GDL. Membrane electrode assemblies (MEAs) were prepared by hot-pressing one of these three electrodes with a commercial electrode (0.5mgPtcm2) and a commercial Nafion 115 membrane, and compared with a reference MEA (from Electrochem Inc. with a Pt loading per electrode of 0.5mgPtcm2 and a maximum power density of 425mWcm2). The cathodic Pt utilization efficiency in the best performing plasma-prepared cathode (based on the double layer GDL/CNF) with a Pt loading of 0.1mgPtcm2 is 3.6 times higher than that measured for the commercial cathode (3.1 versus ). On the anode side, the three designs of plasma-prepared electrodes with 0.01mgPtcm2 lead to similar MEA performance than a commercial electrode at high backpressure (3bar). At a lower backpressure, the GDL/CNF electrode is the best performing plasma-prepared anode.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Australie</li>
<li>France</li>
</country>
</list>
<tree>
<country name="Australie">
<noRegion>
<name sortKey="Caillard, A" sort="Caillard, A" uniqKey="Caillard A" first="A" last="Caillard">A. Caillard</name>
</noRegion>
<name sortKey="Boswell, R" sort="Boswell, R" uniqKey="Boswell R" first="R" last="Boswell">R. Boswell</name>
<name sortKey="Boswell, R" sort="Boswell, R" uniqKey="Boswell R" first="R" last="Boswell">R. Boswell</name>
<name sortKey="Charles, C" sort="Charles, C" uniqKey="Charles C" first="C" last="Charles">C. Charles</name>
<name sortKey="Charles, C" sort="Charles, C" uniqKey="Charles C" first="C" last="Charles">C. Charles</name>
</country>
<country name="France">
<noRegion>
<name sortKey="Caillard, A" sort="Caillard, A" uniqKey="Caillard A" first="A" last="Caillard">A. Caillard</name>
</noRegion>
<name sortKey="Brault, P" sort="Brault, P" uniqKey="Brault P" first="P" last="Brault">P. Brault</name>
<name sortKey="Brault, P" sort="Brault, P" uniqKey="Brault P" first="P" last="Brault">P. Brault</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 008800 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 008800 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:78ABA4092C5144D57BC1050FCD4DAC2D089BE60C
   |texte=   Improvement of the sputtered platinum utilization in proton exchange membrane fuel cells using plasma-based carbon nanofibres
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024